Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Sci Total Environ ; 914: 169860, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199341

RESUMO

Halobenzoquinones (HBQs) are a class of disinfection byproducts with high cytotoxicity and potential carcinogenicity, which have been widely detected in chlorination of drinking water and swimming pool water. However, to date, the formation of HBQs upon ozonation and the HBQ precursors have been overlooked. This study investigated the formation of chlorinated and dechlorinated HBQs from six dichlorophenol (DCP) isomers. The monomeric and dimeric HBQs were identified in all the ozonation effluents, exhibiting 1-100 times higher toxicity levels than their precursors. The sum of detected HBQs intensity had a satisfactory linear relation with the maximum toxic unit (R2 = 0.9657), indicating the primary toxicity contribution to the increased overall toxicity of effluents. Based on density functional theory calculations, when ozone attacks the para carbon to the hydroxyl group of 2,3-DCP, the probability of producing chlorinated HBQs is 80.41 %, indicating that the para carbon attack mainly resulted in the formation of monomeric HBQs. 2,3-dichlorophenoxy radicals were successfully detected in ozonated 2,3-DCP effluent through electron paramagnetic resonance and further validated using theoretical calculation, revealing the formation pathway of dimeric HBQs. The results indicate that chlorinated phenols, regardless of the positions of chlorine substitution, can potentially serve as precursors for both chlorinated and dechlorinated HBQs formation during ozonation.


Assuntos
Compostos Alílicos , Água Potável , Hidrocarbonetos Clorados , Ozônio , Poluentes Químicos da Água , Purificação da Água , Benzoquinonas , Desinfecção/métodos , Halogenação , Água Potável/análise , Fenóis , Carbono , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
2.
Asian J Surg ; 47(1): 201-207, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37574361

RESUMO

BACKGROUND: Invasive lung adenocarcinoma (LUAD) patients with the micropapillary (MPP) component tend to have extremely poor prognosis. To optimize clinical outcomes, a better understanding of specific concurrent gene alterations and their impact on the prognosis of patients with the MPP component is necessary. METHOD: A total of 621 Chinese patients with surgically resected invasive LUAD who underwent genetic testing for lung cancer were enrolled in this retrospective study. The genomic profiling of major lung cancer-related genes based on next-generation sequencing (NGS) was carried out on formalin-fixed paraffin-embedded tumor samples. RESULT: Among 621 patients with invasive LUAD, 154 (24.8%, 154/621) had the MPP component. We found that PIK3CA (4.5% vs 1.3%), KRAS (9.1% vs 4.7%), and ROS1 (2.6% vs 0.4%) were more frequent in patients with the MPP component than those without the MPP component (P < 0.05). The co-mutation occurred in 66 patients (10.6%, 66/621), of which 19 patients with the MPP component. Most of them were EGFR co-mutations (89.5%, 17/19), including EGFR and PIK3CA, EGFR and ERBB2, and other types. Patients with the MPP component who harbored EGFR co-mutations showed significantly worse recurrence-free survival (RFS) than single EGFR mutation (median RFS 20.1 vs 30.5 months; hazard ratio [HR]: 8.008; 95% confidence interval [CI]: 1.322-48.508). CONCLUSIONS: Patients with the MPP component harbored the co-mutation of driver genes had a higher risk of recurrence after surgery, especially in patients with EGFR co-mutation. EGFR co-mutation was a significant prognostic factor for RFS in patients with the MPP component.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Proteínas Proto-Oncogênicas/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/cirurgia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/cirurgia , Prognóstico , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Receptores ErbB/genética
3.
Transl Lung Cancer Res ; 12(11): 2294-2309, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38090515

RESUMO

Background: Chemoresistance is a significant factor contributing to tumor recurrence and treatment failure in non-small cell lung cancer (NSCLC). The phosphofructokinase, platelet (PFKP) is highly expressed in NSCLC and is associated with a poor prognosis. Exploring the molecular mechanism and identifying effective strategies to overcome chemoresistance will have important clinical significance in improving the diagnosis and treatment of NSCLC. Methods: The correlation between PFKP and cisplatin resistance in NSCLC patients was assessed by organoids and immunohistochemistry. The impact of PFKP on the prognosis of NSCLC patients was analyzed using The Cancer Genome Atlas (TCGA) database. In NSCLC cell lines, the expression of PFKP was modulated using lentivirus, and cisplatin sensitivity was assessed by flow cytometry. Subsequently, the therapeutic effect of cisplatin was tested in BALB/c nude mice implanted subcutaneously with tumor cells. We performed luciferase assay and immunohistochemistry (IHC) to investigate the correlation between PFKP and ABCC2 (ATP-binding cassette sub-family C member 2). Results: Overexpression of PFKP was correlated with poorer survival rates in NSCLC patients who received platinum-based chemotherapy. Using NSCLC organoid, we found that the expression of PFKP was elevated in cisplatin (CDDP)-resistant patients with NSCLC. Overexpression of PFKP decreased the sensitivity of NSCLC cells to CDDP, while genetic inhibition of PFKP enhanced CDDP sensitivity both in vitro and in vivo. Furthermore, we found that PFKP upregulated ABCC2 by increasing the levels of phosphorylation of IκBα and nuclear p65 NF-κB subunit protein. Conclusions: PFKP can regulate the expression of ABCC2 through the activation of NF-κB, which in turn promotes chemoresistance in NSCLC. PFKP has the potential to be a personalized therapeutic target for NSCLC patients with chemoresistance.

4.
Lung Cancer ; 186: 107392, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37816297

RESUMO

BACKGROUND: The nature of the solid component of subsolid nodules (SSNs) can indicate tumor pathological invasiveness. However, preoperative solid component assessment still lacks a reference standard. METHODS: In this retrospective study, an AI algorithm was proposed for measuring the solid components ratio in SSNs, which was used to assess the diameter ratio (1D), area ratio (2D), and volume ratio (3D). The radiologist measured each SSN's consolidation to tumor ratio (CTR) twice, four weeks apart. The area under the receiver-operating characteristic (ROC) curve (AUC) was calculated for each method used to discriminate an Invasive Adenocarcinoma (IA) from a non-IA. The AUC and the time cost of each measurement were compared. Furthermore, we examined the consistency of measurements made by the radiologist on two separate occasions. RESULTS: A total of 379 patients (the primary dataset n = 278, the validation dataset n = 101) were included. In the primary dataset, compared to the manual approach (AUC: 0.697), the AI algorithm (AUC: 0.811) had better predictive performance (P =.0027) in measuring solid components ratio in 3D. Algorithm measurement in 3D had an AUC no inferior to 1D (AUC: 0.806) and 2D (AUC: 0.796). In the validation dataset, the AI 3D method also achieved superior diagnostic performance compared to the radiologist (AUC: 0.803 vs 0.682, P =.046). The two measurements of the CTR in the primary dataset, taken 4 weeks apart, have 7.9 % cases in poor consistency. The measurement time cost by the radiologist is about 60 times that of the AI algorithm (P <.001). CONCLUSION: The 3D measurement of solid components using AI, is an effective and objective approach to predict the pathological invasiveness of SSNs. It can be a preoperative interpretable indicator of pathological invasiveness in patients with lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Adenocarcinoma , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Invasividade Neoplásica
5.
ACS Appl Mater Interfaces ; 15(35): 41880-41891, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37625156

RESUMO

Recent advancements have introduced anisotropic structures, particularly 2D nanosheets, into aerogels, resulting in unique morphologies and exceptional properties that differ from those assembled by isotropic nanoparticles. However, exploration of the distinct porous networks and the resulting properties is limited. We focus on rare earth yttria (Y2O3) aerogels as a case in point and demonstrate the synthesis of aerogels with nanosheet and nanoparticle assemblies using elaborative sol-gel chemistry. With the aid of X-ray computed tomography, three-dimensional visualizations of the aerogels provide relative compressive views of the porous network, revealing that the Y2O3 aerogel assembled by nanosheets possesses a hierarchical pore structure characterized by uneven pore distribution, particularly the presence of macropores throughout; in contrast, these consist of nanoparticles exhibiting a relative uniform pore distribution. High-temperature examinations indicate that the nanosheet aerogels are much more stable with a specific surface area of 64 m2·g-1 after being exposed at 1300 °C; meanwhile, the aerogels present durable and efficient thermal insulation performances. The exceptional thermal properties are attributed to the synergistic effects of the nanosheets' crystalline nature and the hierarchical porous network. The nanosheet Y2O3 aerogel also exhibited superior luminescent emission characteristics, further enhancing its potential for various applications. Our findings provide further insights into optimization of the microstructures in nanoporous aerogels, particularly through the utilization of anisotropic nanosheets.

6.
Open Life Sci ; 18(1): 20220650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528886

RESUMO

The expression status of proinflammatory cytokines in high-altitude pulmonary arterial hypertension (PAH) has been well studied. However, the changes in interleukin (IL)-8 and tumor necrosis factor α (TNF-α) during the reversible changes in pulmonary vascular remodeling (PVR) in PAH after detaching from a hypobaric hypoxic environment have not been elucidated. This investigation elucidated a high-altitude PAH rat model. Then, PAH rats in the high-altitude group were maintained in the high-altitude area, and rats in the low-altitude group returned to the low-altitude area. After 0, 10, 20, and 30 days of PAH modeling, right ventricular systolic pressure (RVSP) and the mean pulmonary arterial pressure (mPAP) were assessed. Right ventricular (RV) hypertrophy was reflected by the ratio of RV/[left ventricle + interventricular septum (S)]. Pathological changes in PVR were accessed by hematoxylin-eosin staining, and medial wall thickness (WT%) and medial wall area (WA%) were measured. TNF-α and IL-8 levels in pulmonary artery tissues and blood were measured with Western blot assay and enzyme-linked immunosorbent assay, respectively. Our results showed that PAH rats exhibited a substantial increase in RVSP and mPAP, RV hypertrophy, PVR, and enhanced generation of TNF-α and IL-8. Then, we found that these pathological changes were gradually aggravated and TNF-α and IL-8 levels were increased in rats in the high-altitude group after 10, 20, and 30 days of PAH modeling. In contrast, the mPAP was decreased and PVR was alleviated in rats in the low-altitude group, accompanying with reduced TNF-α and IL-8 production. In conclusion, our study demonstrated that the generation of TNF-α and IL-8 was also reversible during the reversible changes in PVR after detaching from a hypobaric hypoxic environment. Thus, proinflammatory cytokine TNF-α and IL-8 levels are positively correlated with PVR severity.

7.
Sci Total Environ ; 901: 165929, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37532054

RESUMO

The toxicity assessment of transformation products (TPs) formed in oxidative water treatment is crucial but challenging because of their low concentration, structural diversity, and mixture complexity. Here, this study developed a novel redox-directed approach for identification of toxic TPs without the individual toxicity and concentration information. This approach based on sodium borohydride reduction comprised an integrated process of toxicological evaluation, fluorescence excitation-emission matrix characterization, high-resolution mass spectrometry detection, followed by ecological toxicity assessment of identified TPs. The redox-directed identification of primary causative toxicants was experimentally tested for the increased nonspecific toxicity observations in the ozonated effluents of model aromatics. Reduction reaction caused a remarkable decrease in toxicity and increase in fluorescence intensity, obtaining a good linear relation between them. More than ten monomeric or dimeric p-benzoquinone (p-BQ) TPs were identified in the ozonated effluents. The occurrence of the p-BQ TPs was further verified through parallel sodium sulfite reduction and actual wastewater ozonation experiments. In vitro bioassays of luminescent bacteria, as well as in silico genotoxicity and cytotoxicity predictions, indicate that the toxicity of p-BQ TPs is significantly higher than that of their precursors and other TPs. These together demonstrated that the identified p-BQ TPs are primary toxicity contributors. The redox-directed approach facilitated the revelation of primary toxicity contribution, illustrating emerging p-BQs are a concern for aquatic ecosystem safety in the oxidative treatment of aromatics-contaminated wastewater.

8.
J Cancer Res Clin Oncol ; 149(10): 7759-7765, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37016100

RESUMO

PURPOSE: To investigate the performance of an artificial intelligence (AI) algorithm for assessing the malignancy and invasiveness of pulmonary nodules in a multicenter cohort. METHODS: A previously developed deep learning system based on a 3D convolutional neural network was used to predict tumor malignancy and invasiveness. Dataset of pulmonary nodules no more than 3 cm was integrated with CT images and pathologic information. Receiver operating characteristic curve analysis was used to evaluate the performance of the system. RESULTS: A total of 466 resected pulmonary nodules were included in this study. The areas under the curves (AUCs) of the deep learning system in the prediction of malignancy as compared with pathological reports were 0.80, 0.80, and 0.75 for all, subcentimeter, and solid nodules, respectively. Additionally, the AUC in the AI-assisted prediction of invasive adenocarcinoma (IA) among subsolid lesions (n = 184) was 0.88. Most malignancies that were misdiagnosed by the AI system as benign diseases with a diameter measuring greater than 1 cm (26/250, 10.4%) presented as solid nodules (19/26, 73.1%) on CT. In an exploratory analysis involving nodules underwent intraoperative pathologic examination, the concordance rate in identifying IA between the AI model and frozen section examination was 0.69, with a sensitivity of 0.50 and specificity of 0.97. CONCLUSION: The deep learning system can discriminate malignant diseases for pulmonary nodules measuring no more than 3 cm. The AI model has a high positive predictive value for invasive adenocarcinoma with respect to intraoperative frozen section examination, which might help determine the individualized surgical strategy.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Secções Congeladas , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/cirurgia
9.
J Hazard Mater ; 452: 131176, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36948118

RESUMO

Microorganisms have difficulty surviving and performing remediation functions in mixed systems with high concentrations of Pb and Cd. Biochar has the potential to assist microorganism remediation as an excellent adsorbent for heavy metals. In this study, pig manure biochar (PMB) was used to assist phosphorus solubilizing bacteria (PSB) to explore the mineralization protection and biofeedback mechanism of biochar on PSB under mixed stress of 1000 mg/L Pb2+ and 500 mg/L Cd2+. The adsorption results showed that the removal of Pb2+ and Cd2+ by PMB+PSB was 148.77% and 72.27% higher than that by PSB. Meanwhile, the non-bioavailable fraction of Cd2+ and acid-soluble fraction of Pb2+ in PMB+PSB were increased by 9% and 3%, respectively. Mineralogical and microbial secretion results confirm that showed that the acidic soluble fraction and non-bioavailable fraction were mostly Pb/Cd-carbonate and Pb/Cd-phosphate. The pore adsorption and precipitation (carbonate) of biochar were able to reduce the exposure of PSB to Pb/Cd and the background stress concentration, thus stimulating the biological positive feedback effect of PSB and forming a microenvironment in the cell periphery. The vesicle detoxification and extracellular polymeric substance protection mechanism of PSB were improved under biochar protection, and the individual size and activity of PSB cells were enhanced. Besides, citric acid release from PSB (28.85% increase) accelerated the dissolution of unstable Cd-carbonate, thereby releasing a large amount of Cd2+ to compete with Pb2+ for PO43-. Thus, the protection of biochar and the positive feedback effect of PSB could reduce the biotoxicity of Cd2+ in the stress system by preferentially forming a stable Cd-phosphate. In addition, the excellent electrical conductivity and organic material adsorption of biochar increased the extracellular electron transport rate of microorganisms, which further accelerated the mineralization and immobilization of Pb2+ and Cd2+, so as to ensure the repair effect of PSB on heavy metals.


Assuntos
Metais Pesados , Poluentes do Solo , Animais , Suínos , Fosfatos , Cádmio/análise , Chumbo , Transporte de Elétrons , Elétrons , Matriz Extracelular de Substâncias Poliméricas/química , Poluentes do Solo/análise , Solo , Carvão Vegetal , Fósforo , Metais Pesados/análise , Bactérias
10.
Artigo em Inglês | MEDLINE | ID: mdl-36892263

RESUMO

The inherent brittleness and hydrophilicity of ceramics pose a great challenge to designing a reliable structure that can resist mechanical loads and moisture in extreme conditions with high temperature and high humidity. Here, we report a two-phase hydrophobic silica-zirconia composite ceramic nanofiber membrane (H-ZSNFM) with exceptional mechanical robustness and high-temperature hydrophobic resistance. For the dual-phasic nanofibers, the amorphous silica blocked the connection of zirconia nanocrystals, and the lattice distortion was observed due to Si in the ZrO2 lattice. H-ZSNFM has strong strength (5-8.4 MPa), high hydrophobic temperature resistance (450 °C), high porosity (89%), low density (40 mg/cm3), low thermal conductivity (30 mW/m·K), and excellent thermal radiation reflectivity (90%). By simulating the actual high-temperature and high-humidity environment, 10-mm-thick H-ZSNFMs can reduce the heat source from 1365 to 380 °C and maintain complete hydrophobicity even in a water vapor environment of 350 °C. This means that it has superior insulation and waterproof performance even in a high-temperature water environment. For firefighting clothing, H-ZSNFM displayed waterproof and insulation layers, which have excellent thermal protection performance and achieve incompatibility between water and fire, providing valuable time for fire rescue and a safety line of defense for emergency personnel. This design strategy with mechanical robust and hydrophobic temperature resistance applies to the development of many other types of high-performance thermal insulation materials and presents a competitive material system for thermal protection in extreme conditions.

11.
J Mol Diagn ; 25(2): 110-120, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36410626

RESUMO

Primary spontaneous pneumothorax (PSP) or pulmonary cyst is one of the manifestations of Birt-Hogg-Dubé syndrome, which is caused by pathogenic variants in FLCN gene. Genetic testing in patients with PSP identifies a certain number of missense or intronic variants. These variants are usually considered as variants of uncertain significance, whose functional interpretations pose a challenge in clinical genetics. To improve recognition of pathogenic splice-altering variants in FLCN gene, computational tools are used to prioritize potential splice-altering variants and then a hybrid minigene assay is performed to verify the RNA splicing pattern. Herein, variants in FLCN exon 11 and its flanking sequence are focused. Eight variants detected in 11 patients with PSP are evaluated, and six variants are prioritized by in silico tools as potential splice-altering variants of uncertain significance. Four variants (c.1177-5_1177-3delCTC, c.1292_1300+4del, c.1300+4C>T, and c.1300+5G>A) are demonstrated by minigene assay to alter RNA splicing of FLCN, and the last three of them are novel. RT-PCR of patient-derived RNA gives consistent results. Genotype-phenotype correlation analysis in patients with PSP with these variants demonstrates good concordance. Our results underline the importance of RNA analysis, which could provide molecular evidence for pathogenicity of a variant, and provide essential information for the clinical interpretation of variants. Combining the clinical information, a definitive diagnosis could be made.


Assuntos
Patologia Molecular , Proteínas Supressoras de Tumor , Genes Supressores de Tumor , RNA , Proteínas Supressoras de Tumor/genética , Virulência , Humanos
12.
J Thorac Dis ; 15(12): 7140-7148, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38249921

RESUMO

Background: Traumatic tracheal rupture is a severe closed chest injury that often causes major respiratory and circulatory disturbances requiring emergency surgery. We have found that veno-venous extracorporeal membrane oxygenation (VV-ECMO) employs lung-protective ventilation strategies to facilitate lung rest, aiming to minimize the risk of ventilator-induced lung injury, while ensuring adequate oxygenation. Case Description: We presented 3 critically ill patients who presented with traumatic bronchial rupture between 2019 and 2021, and underwent emergency thoracic surgery with the help of VV-ECMO. The ECMO support time, the operative time, the duration of postoperative hospital stay, and the postoperative mechanical ventilation time were collected in this study. All patients were successfully treated and discharged home. The duration of surgery ranged from 135 to 180 min, the duration of ECMO use ranged from 98 to 123 h, the duration of postoperative ventilator use ranged from 5 to 8 days, and the duration of postoperative hospital stay ranged from 14 to 30 days. All 3 patients had good postoperative pulmonary re-expansion, with no residual tracheal or bronchial stenosis, and good physical activity following the surgery. Conclusions: We reported successful use of VV-ECMO in critically ill patients with traumatic bronchial rupture presenting in acute respiratory and circulatory failure. Performing emergency surgery with ECMO-assisted support can provide more time to stabilize the patient and ensure the safety of the procedure. However, considering the small sample size of this study, larger cohorts with long-term follow-up data are needed to further evaluate its application.

13.
Front Surg ; 9: 889753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574557

RESUMO

Background: Crigler-Najjar syndrome type 2 (CNS-II) is a rare genetic disease that is associated with a lack of uridine diphosphate-glucuronosyltransferase. Esophageal carcinoma is the sixth most common cause of cancer-related death worldwide, for which surgery is the most effective treatment. Reports on patients with both conditions requiring surgery are limited and The impact of hyperbilirubinemia caused by CNS-II on the perioperative period is unknown. Previous studies have found that patients with Crigler-Najjar syndrome have an increased risk of gallstones and related complications, which also poses corresponding challenges to the treatment. Herein, we present a patient with CNS-II who underwent successful thoracoscopic surgery for esophageal carcinoma. Case summary: A 65-year-old male presented to our hospital with a choking sensation after eating. A physical examination showed yellowing of the sclera and skin. The patient manifested persistent jaundice since birth and had visited many hospitals, but the cause remained undiagnosed. We performed genetic testing, which confirmed CNS-II. Gastroscopy indicated esophageal carcinoma. A multidisciplinary team discussion was carried out to determine the appropriate treatment and perioperative management for this patient. The results show that surgical resection was the most appropriate approach. Finally, the patient underwent thoracoscopic surgery for esophageal carcinoma without complications. Conclusion: Esophageal carcinoma in patients with Crigler-Najjar syndrome is a rare case, and perioperative management is key in the treatment process. It is necessary to pay close attention to the changes of the disease to prevent complications.

14.
J Biomater Sci Polym Ed ; 33(2): 197-211, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686102

RESUMO

As a novel type of theranostic radioactive agents, 177Lu-labeled nanomaterials conjugated to macromolecules have been described. The study aimed to fabricate PAMAM-G4-(177Lu-dendrimer)-bombesin-folate in the dendrimeric cavity, assess the radiopharmaceutical ability for specifically targeted radiotherapy and simultaneously detects gastrin-releasing peptide receptors (GRPR) and folate receptors (FRs) overexpressed in lung carcinoma cells, respectively. In an aqueous-basic media, p-SCN-benzyl-DOTA was conjugated to the dendrimer. This dendrimer was formed by activating the carboxylic acid groups of DOTA-folic acid and bombesin with HATU and conjugating them to develop the dendrimer. As part of this process, the conjugate was combined with 1% HAuCl4, added NaBH4 and filtered by ultrafiltration. Infrared, UV-Vis, TEM analysis, dynamic light scattering (DLS), and fluorescence spectroscopy were employed to observe the composition of the fabricated sample. Radio-labeled 177LuCl3 was used to label the conjugate, which was then evaluated using the radio-HPLC method. Findings demonstrated dendrimeric functionalization with remarkable radiochemical composition purity up to >96%. Because of fluorescence studies, it was determined that the occurrence of AuNMs in the dendrimeric cavities gives beneficial photo-physical characteristics to the radiopharmaceutical for bio-imaging. HEL-299 lung cancer cells exhibited a selective absorption of the drug (%). It might be helpful as nuclear and optical imaging agents for lung cancers that overexpress FRs and GRPR and as a specific target for radiation therapy if combined with folate-bombesin.


Assuntos
Ouro , Neoplasias Pulmonares , Bombesina , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Receptores da Bombesina
15.
Chemosphere ; 288(Pt 3): 132633, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34687681

RESUMO

Reductive processes are an important type of pollutant removal technology, particularly for organic halogens. NO3- is an anion and pollutant that is commonly present in wastewater. In this study, a novel advanced reduction process (ARP) induced by NO3- photolysis was developed to remove 2,4,6-tribromophenol (TBP) and NO3-. The UV/NO3-/formate acid (FA) process achieved NO3- removal and improved the debromination of TBP (initial TBP concentration = 0.1 mM) (up to 97.8%), however, their coexistence adversely affected the reductive removal of each component. Acidic conditions (pH 3 in this study) benefited the removal of NO3- and the debromination of TBP. Cl- promoted NO3- removal in UV/NO3-/FA, however, it decreased the debromination effect of TBP by 27.8%. Humic acid, a typical dissolved organic matter, suppressed NO3- removal, TBP degradation and debromination under all experimental conditions. Methyl viologen significantly inhibited the performance of ARP, and this verified the role of CO2•- in this ARP. Insufficient reduction and over-reduction of NO3- were observed under different conditions and a greater amount of NH4+ was formed under the influence of TBP. The data also indicated that as much as 80% of the removed NO3- was converted to NO2-, and this is noteworthy. Due to the reductive radicals generated from the oxidation of FA, both oxidative and reductive products of TBP were detected in the effluent. The results of this study provide a potential technology for the reductive removal of organic halogens from NO3--rich wastewater.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Substâncias Húmicas , Oxirredução , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água/análise
16.
Sci Total Environ ; 808: 151996, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-34856278

RESUMO

In this study, ozonation catalyst nano-MnO2 blended polyvinylidene fluoride (PVDF) membrane was fabricated via phase inversion method and applied to membrane bioreactors (MBR), and then coupled with in-situ ozonation to study the anti-biofouling performance and reveal its mechanism. Results showed that, compared with pristine PVDF membrane (MBR_M0), 0.75 wt% and 1.00 wt% nano-MnO2 modified PVDF membrane (MBR_M0.75 and MBR_M1.00) could mitigate the membrane biofouling rate. Meanwhile MBR_M1.00 coupled with in-situ ozonation could increase the membrane cleaning cycle to 1.5 and 2.7 times, compared with MBR_M0 and MBR_M0.75 without in-situ ozonation. The possible mechanisms included that the nano-MnO2 modification coupled with in-situ ozonation directly removed the biofouling on the membrane surface, improved the hydrophilicity of the membrane surface and enhanced the chemical oxidation and biodegradation of membrane biofouling contaminants in the sludge mixture. The results of this work provide a new strategy for the control of membrane biofouling in MBR to treat industrial wastewater.


Assuntos
Incrustação Biológica , Ozônio , Incrustação Biológica/prevenção & controle , Reatores Biológicos , Polímeros de Fluorcarboneto , Membranas Artificiais , Polivinil , Águas Residuárias
17.
Ann Transl Med ; 9(20): 1516, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790722

RESUMO

BACKGROUND: Few studies have exclusively investigated the value of pathological complete response (pCR), in esophageal squamous cell carcinoma (ESCC) patients, although it is a clinically significant parameter to evaluate the impact of neoadjuvant chemoradiotherapy (nCRT) on treatment outcome after surgery. The aim of our study was to explore the relationship between pCR after nCRT and survival among patients with local ESCC. METHODS: All patients receiving nCRT followed by surgery in NEOCRTEC5010-trial (NCT01216527) were included. Non-pCR patients were classified into three subgroups: ypTanyN0M0, ypT0NanyM0 and ypTanyNanyM0. The Kaplan-Meier method with log-rank test was employed to evaluate disease-free survival (DFS) and overall survival (OS). Multivariate regression analysis was performed using a Cox proportional hazards model to identify clinicopathological parameters associated with pCR. RESULTS: Among the 185 patients included, 80 (43.2%) achieved pCR after nCRT. The mean survival time of the pCR group was significantly longer than that of the non-pCR group (92.6 vs. 69.2 months; HR, 2.70; 95% CI: 1.48-4.92; P=0.001). The 5-year OS and DFS of the pCR group were 79.3% and 77% respectively, compared to 54.8% and 51.2%, respectively, in the non-pCR group. The results showed that the OS and DFS of the ypTanyN0M0 group were better than those of the ypT0NanyM0 group and the ypTanyNanyM0 group. We also found that the number of dissected lymph nodes and pCR were independent risk factors for DFS and OS rates. CONCLUSIONS: pCR after nCRT is an important prognostic indicator of OS and DFS in patients with ESCC. In addition, lymph-node status could represent an important parameter in the prognostic evaluation of esophageal cancer patients.

18.
Am J Chin Med ; 49(7): 1667-1682, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34488552

RESUMO

In Lung adenocarcinoma (ADC), Qi-Yin deficiency syndrome (QY) is the most common Traditional Chinese medicine (TCM) syndrome. This study aimed to investigate the diversity and composition of gut microbiota in ADC patients with QY syndrome. 90 stool samples, including 30 healthy individuals (H), 30 ADC patients with QY syndrome, and 30 ADC patients with another syndrome (O) were collected. Then, 16s-RNA sequencing was used to analyze stool samples to clarify the structure of gut microbiota, and linear discriminant analysis (LDA) effect size (LEfSe) was applied to identify biomarkers for ADC with QY syndrome. Logistic regression analysis was performed to establish a diagnostic model for the diagnosis of QY syndrome in ADC patients, which was assessed with the AUC. Finally, 20 fecal samples (QY: 10; O: 10) were analyzed with Metagenomics to validate the diagnostic model. The [Formula: see text] diversity and [Formula: see text] diversity demonstrated that the structure of gut microbiota in the QY group was different from that of the H group and O group. In the QY group, the top 3 taxonomies at phylum level were Firmicutes, Bacteroidetes, and Proteobacteria, and at genus level were Faecalibacterium, Prevotella_9, and Bifidobacterium. LEfSe identified Prevotella_9 and Streptococcus might be the biomarkers for QY syndrome. A diagnostic model was constructed using those 2 genera with the AUC = 0.801, similar to the AUC based on Metagenomics (0.842). The structure of gut microbiota in ADC patients with QY syndrome was investigated, and a diagnostic model was developed for the diagnosis of QY syndrome in ADC patients, which provides a novel idea for the understanding and diagnosis of TCM syndrome.


Assuntos
Adenocarcinoma de Pulmão/microbiologia , Microbioma Gastrointestinal , Neoplasias Pulmonares/microbiologia , Deficiência da Energia Yin/microbiologia , Adolescente , Adulto , Idoso , Fezes/microbiologia , Humanos , Medicina Tradicional Chinesa , Pessoa de Meia-Idade , Adulto Jovem
19.
PeerJ ; 9: e11319, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996281

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the leading histological subtype of non-small cell lung cancer (NSCLC). METHODS: In the present study, the gene matrixes of LUAD were downloaded from The Cancer Genome Atlas to infer immune and stromal scores with the 'Estimation of Stromal and Immune cells in Malignant Tumor tissues using Expression data' (ESTIMATE) algorithm and identified immune-related differentially expressed genes (DEGs) between the high- and low-stromal/immune score groups. Next, all DEGs were subjected to univariate Cox regression and survival analyses to screen out prognostic biomarkers in the tumor microenvironment (TME), and were validated in the Gene Expression Omnibus database. Single-sample gene set enrichment analysis (ssGSEA) was performed to assess the level of tumor-infiltrating immune cells (TIICs) and immune functions, and GSEA was used to identified pathways altered by prognostic biomarkers. RESULTS: Survival analysis showed that LUAD in the high-immune and stromal score group had a better clinical prognosis. A total of 303 immune-related DEGs were detected. Univariate Cox regression and survival analyses revealed that P2Y purinoceptor 13 (P2RY13) was a favorable factor for the prognosis of LUAD. ssGSEA and Spearman correlation analysis demonstrated that P2RY13 was highly correlated with various TIICs and immune functions. Several immune-associated pathways were enriched between the high- and low-expression P2RY13 groups. CONCLUSION: P2RY13 may be a potential prognostic indicator and is highly associated with the TME in LUAD. However, further experimental studies are required to validate the present findings.

20.
PeerJ ; 9: e11233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954048

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is the most common pathological subtype of lung cancer. Ferroptosis, an oxidative, iron-dependent form of necrotic cell death, is highly associated with tumorigenesis and cancer progression. However, the prognostic value of ferroptosis progress in LUAD was still rarely be investigated. METHODS: Herein, we collected three mRNA expression profiles and 85 ferroptosis-related genes from public databases. The "limma" package was used to identify ferroptosis-related differentially expressed genes (DEGs). Univariate Cox regression analysis and LASSO regression analysis were applied to screen and develop a ferroptosis-related gene signature (FRGS) and a formula to calculate the risk score. Multivariate Cox regression analysis was implemented to determine independent prognostic predictors of overall survival (OS). The area under the receiver operating characteristic curve (AUC) and calibration plot were used to evaluate the predictive accuracy of the FRGS and nomogram. RESULTS: We developed a FRGS with five genes (CYBB, CISD1, FADD, SAT2, VDAC2). The AUC of the FRGS in TCGA cohort was 0.777 at 1-year, 0.721 at 3-year and 0.725 at 5-year, significantly superior to the AUC of TNM stage (1-year: 0.701, 3-year: 0.691, 5-year: 0.686). A similar phenomenon was observed in GEO cohort 1 and 2. Multivariate Cox regression analysis indicted TNM stage and risk score were independent prognostic predictors. Finally, we built a nomogram with TNM stage and FRGS, the AUCs of which markedly higher than that of FRGS or TNM stage alone. CONCLUSION: We constructed a prognostic FRGS with five ferroptosis-related genes and a nomogram for predicting the 1-, 3- and 5-year survival rate of LUAD patients, which may provide a new understanding of the prognostic value of ferroptosis progress in LUAD and will benefit prognosis assessment of LUAD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...